scroll down

Water & Waste Water Treatment

Chlorine dioxide (ClO2) can be applied at several points during treatment: to the raw water as a preoxidant, to the clarification tank, to post-clarification, or to the filtered water as primary disinfectant. Chloramine or chlorine may be used for secondary disinfection following chlorine dioxide application. Figure 1 shows possible ClO2 application points during treatment. Downstream residual concentrations make ClO2 concurrent with other treatment processes.

Chlorine dioxide is a chlorine compound in the +IV oxidation state. As such, it is a powerful oxidant and disinfectant. Chlorine dioxide is frequently used to improve the removal of taste and odor compounds, oxidation and removal of iron and manganese, removal of color, and inactivation of chlorine-resistant microorganisms such as Cryptosporidium. Pathogen inactivation with chlorine dioxide is much less affected by pH in the 6.0 to 8.5 range than with chlorine. However, the inactivation of Cryptosporidium oocysts and Giardia cysts using chlorine dioxide occurs more rapidly and is more efficient at higher pH. Iron concentration, manganese concentration, sunlight exposure, and aeration are among the parameters that exert additional chlorine dioxide demand.

The concentration (C), contact time (T), pH and temperature are key parameters in ClO2 used for oxidation and disinfection. The product of concentration and time (CT) is the most important operation parameter in disinfection and in activation.

Chlorine dioxide yields lower levels of organic disinfection byproducts (DBPs) in comparison to free chlorine. Total organic carbon (TOC) and ultraviolet absorbance (UV) are two measures of DBP-reactive organic materials and of ClO2 demand.

Chlorine dioxide gas is explosive under pressure and must be generated on-site. The generation process, chemicals, and capacity vary depending on the application. However, chlorine dioxide is typically formed in the reaction of sodium chlorite (NaClO2) solution with hydrichloric acid and with gaseous chlorine (Cl2) or hypochlorous acid (HOCl). TERSUS Chlorine-Di-Oxide underwater & encapsulated generators have been successfully minimizing DBP formation; and trough higher yield resulting in lower optimal precursor chemical consumption.

TERSUS® Chlorine-Di-Oxide is a perfect solution to the problems of water in a Raw Water & Wastewater treatment for following reasons

  • CT disinfection credit
  • Preoxidant to control tastes and odor
  • Control of iron and manganese
  • Disinfection of Secondary treated wastewater before disposal / as feed to Tertiary Treatment for Zero Liquid Discharge [ZLD]
  • Control of hydrogen sulfide and phenolic compounds

Advantages of TERSUS® Chlorine-Di-Oxide

  • Chlorine dioxide is more effective than chlorine and chloramines for inactivation of viruses
  • Cryptosporidium, and Giardia
  • Chlorine dioxide oxidizes iron, manganese, and sulfides
  • Chlorine dioxide may enhance the clarification process
  • Taste and odors resulting from algae and decaying vegetation, as well as phenolic compounds, are controlled by chlorine dioxide
  • Under proper generation conditions (i.e., no excess chlorine), halogen-substituted DBPs are not formed
  • Chlorine dioxide doesnot form Bromate while disinfecting sea wtare in a desalination plant
  • Chlorine dioxide is easy to generate
  • Biocidal properties are not influenced by pH
  • Chlorine dioxide provides residuals